We encourage you to report any issues you encounter while using the website.

Biography

Prof.  Amar  Aissani
Universit´e des Sciences et de la Technologie Houari Boumediene,  Algeria

Title: On  Non Parametric Probability Distributions: Probabilistic and Statistical Aspects

Abstract:

Usual probability distributions are "parametric" in the sense that they depend on some parameters. For example, the exponential distribution depends on only one parameter (mean or failure rate); the normal distribution depends on two parameters (mean and variance). However, we can show examples in which the chi-square test leads to accept two different distributions, Gamma and Raighley, which are both characterized by Increasing Failure Rate (IFR).

Indeed, in practice, an engineer is not always interested by the concrete parametric probability distribution itself, but simply in some "aging property" of the system. The more simplest example is given by Reliability or Survival analysis studies , in which practitioners are interested only in a stage of aging or rejuvenation; for example "Increasing(Decreasing) Failure Rate" i.e. IFR(DFR). So, we consider the class of all probability distributions with IFR(DFR)property.Because it contains a collection of probability distributions that share a common aging property, such a class is non-parametric rather than parametric. Other stochastic models, such as queueing , insurance, medicine, or biological models, are also interested in the properties of such classes. In this communication, we will illustrate probabilistic and statistical aspects of such on Non Parametric PDFs on two particular distributions: NBUAFR (New Better than Used Average Failure Rate) and DURL (Decreasing Uncertainty Residual Life) distributions.  Numerical Illustrations will be given in Reliability Analysis on electronical systems and also on Survival Analysis in Medicine and Biological systems. 

Biography:

Aissani Amar, RIIMA Laboratory (Research in Intelligent Informatics, Mathematics and Applications), University of Science &Technology Houari Boumediene (USTHB), Algeria
amraissani@yahoo.fr  , aaissani@usthb.dz, aissaniammmarrr8@gmail.com

https://orcid.org/0000-0003-0567-6942 ,
https://www.adscientificindex.com/scientist/amar-aissani/103715 ,
https://www.semanticscholar.org/author/Amar-Aissani/1686496 ,
https://dblp.org/pid/25/185.html
Books
Aissani A. , Stochastic Models of Relability Theory, OPU, Algier, 1992.
Aissani A. Modelling and Simulation et Simulation, OPU,Algiers, 1st ed. 2007, 2nd Edition 2010.
Medvediev G.A.,Dudin A.N.,   Melenets Y.V.,   Practicum Informatique de Théorie des Files d’Attente, OPU, Alger, 2007. 2010 2ième édition Traduction from Russian by A. Aissani. 
Aissani A., Introduction to Cryptology and Computer Security to appears. Available in a simplified version inr http://campusvirtuel.usthb.dz 
Saidi Ghania, Aissani Amar, Lois non Paramétriques de Survie et leurs Applications, Editions Universitaires Européennes, 2016. 

Some  works on the subject
1.Benaoudia, H.; Aissani, A. Non-Parametric Test for Decreasing Uncertainty of Residual Life Distribution (DURL). Mathematics 2023, 11, 4227. https://doi.org/10.3390/math11204227
2.Benaoudia, H., Aissani, A. (2022). A Non Parametric Test for Decreasing Uncertainty Residual Life Distribution (DURL). In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Scie1nce and Its Applications – ICCSA 2022. ICCSA 2022. Lecture Notes in Computer Science, vol 13376. Springer, Cham. https://doi.org/10.1007/978-3-031-10450-3_14
3.Amar Aissani, An MX/G/1 energetic retrial queue with vacations and control ,IMA Journal of Management Mathematics, Volume 22, Issue 1, January 2011, Pages 13–32, https://doi.org/10.1093/imaman/dpp024
4.Ghania Saidi  & Amar Aissani, Bornes et Inégalités pour le Processus Tamisé et le Processus de Réparation Imparfaite, Société Française de Mathématiques,  https://scholar.google.fr/citations?view_op=view_citation&hl=fr&user=_5kuR_4AAAAJ&cstart=20&pagesize=80&citation_for_view=_5kuR_4AAAAJ:mB3voiENLucC
5.Taleb, S., Aissani, A. Unreliable M/G/1 retrial queue: monotonicity and comparability. Queueing Syst 64, 227–252 (2010). https://doi.org/10.1007/s11134-009-9158-1
6.N Oukid, A Aissani, Bounds on busy period for queues with breakdowns, Advances and Applications in Statistics 11 (2), 137-156, 2009. 
7.G Saidi, A Aissani, Bounds on moment generating functions of HNBUE class and its variantsAdvances and Applications in Statistics 15 (2), 181, 2010.
8.A Aissani, H Benaoudia, Comparison of Reliability Systems Based Uncertainty, International Journal of Physical and Mathematical Sciences 2 (4), 290-294, 2008. 
9. Aissani, A. Optimal control of an M/G/1 retrial queue with vacations. J. Syst. Sci. Syst. Eng. 17, 487–502 (2008). https://doi.org/10.1007/s11518-008-5093-7
10. Smail Adjabi, Karima Lagha et Amar Aïssani, Application of nonparametric laws to queuing systems and renewal theory, RAIRO Oper. Res. 38 (2004) 243-254
11. A.Aissani, An MX/G/1 retrial queue with exhaustive vacations,Journal of Statistics and Management Systems, Volume 3, pp.269-286 (2000)
12. A Aïssani, Comparing due-date-based performance measures for queueing models
Belg. J. Oper. Res. Statist. Comput. Sci  (Now 4OR) 39, 2-3, 1999. 

Copyright © 2023 The Academic Communications, PTE. LTD . All rights reserved.